My Blogs

Posts tagged with "算法"

堆排序(C语言描述)

Tags: C语言 , 算法

Published 2009年09月09日 17:15 by james

1991年计算机先驱奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德(Robert W.Floyd)和威廉姆斯(J.Williams)在1964年共同发明了著名的堆排序算法(Heap Sort)。 n个关键字序列Kl,K2,…,Kn称为(Heap),当且仅当该序列满足如下性质(简称为堆性质):

(1) Ki <= K2i且Ki <= K2i+1 或

(2) Ki >= K2i且KI >= K2i+1 (1≤i≤ n)

若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。

大根堆和小根堆的根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆,又称最小堆. 根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆又称最大堆. 注意: ①堆中任一子树亦是堆. ②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。

堆排序(HeapSort)是一树形选择排序。堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系(参见二叉树的顺序存储结构),在当前无序区中选择关键字最大(或最小)的记录。

直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。

堆排序可通过树形结构保存部分比较结果,可减少比较次数。

实现一个数从小到大排序,既可以使用大根堆,也可以使用小根堆。 …