内容简介 书中通过大量案例介绍了PyTorch的使用方法、神经网络的搭建、常用神经网络(如卷积神经网络、循环神经网络)的实现,以及实用的深度学习技术,包括迁移学习、对抗生成学习、深度强化学习、图神经网络等。 本书基于PyTorch1.6.0,对全书代码进行了全面更新,同时增加了Transformer、BERT、图神经网络等热门深度学习技术的讲解,更具实用性和时效性。